
frb-mi xu. AO 7a/ 26c
RIA-8O-U930

TECHNICAL
LIBRARY

A STOCHASTIC NETWORK APPROACH TO TEST AND CHECKOUT

Lawrence J. Waiters and Michael V. Vasilik

October 1970

P-4486

A STOCHASTIC NETWORK APPROACH TO TEST AND CHECKOUT

Lawrence J. Matters and Michael V. Vasilik

The RAND Corporation
1700 Main Street

Santa Monica, California

ABSTRACT

This paper demonstrates the usefulness of GERT simulation for

modeling and evaluating policies and processes in the area of test

and checkout. Some of the latest developments and extensions to a

GERT simulation program are used to model a test plan development

process, a general test and checkout process, and specific cases of

the latter.

*
Any views expressed in this paper are those of the authors.

They should not be interpreted as reflecting the views of The RAND
Corporation or the official opinion or policy of any of its govern-
mental or private research sponsors. Papers are reproduced by The
RAND Corporation as a courtesy to members of its staff.

Presented at the Fourth Conference on Applications of Simulation,
sponsored by AIIE, ACM, IEEE, SHARE, SCI and TIMS, in New York,
December 19 70.

-1.

A STOCHASTIC NETWORK APPROACH TO TEST AND CHECKOUT

INTRODUCTION

GERT (Graphical ^valuation and Review Technique) is a network

analysis technique that has been developed for the formulation, model-

ing and evaluation of complex systems and processes. It embodies con-

cepts found in stochastic network, signal flowgraph, PERT and semi-

Markov theory. Descriptions of the development and applications of

the technique may be found in References [5, 6, 10, 15, 16, 17, 18,

23 and 24].

The purpose of the paper is to demonstrate the usefulness of a

GERT simulation program for modeling and evaluating various develop-

ment, diagnosis and repair policies and processes encountered in the

test and checkout environment.

Unless otherwise noted, the terminology and network conventions

used throughout this paper correspond to tho"se in the GERT Simulation

Program II (GERTS II) manual [l7]. Briefly, the following list and

Figure 1 indicate those characteristics and capabilities of GERTS II

and subsequent extensions that are used in this paper.

1. Nodes which are characterized by:

a. Deterministic node type. All branches emanating

from the node are taken if the node is realized.

b. Probabilistic node type. At most, one branch

emanating from the node is realized (the proba-

bilities that determine which one of the branches

is taken are specified by the user) .

c. Number of releases. One number specifies the num-

ber of releases or times that activities inci-

dent to the node must be realized before the node

can be realized for the first time; the other

number specifies the number of releases required

to have the node realized after the first time.

2. Activities (branches) that are characterized by:

a. Probabilities associated with whether or not the

Number of -
releases for initia
node realization

Number of
releases for subsequent

node realization

Node number

Deterministic

Probabilistic

Fig. 1 —Node Characteristics and Network Modifications

-3-

branch emanating from a probabilistic node will be taken.

b. Distribution of the time to traverse the branch.

c. An activity number when completion of the acti-

vity may cause a modification in the network.

3. Network modifications which occur when completion of a modi-

fication activity causes one node to be replaced by another node. The

node to be replaced is deleted from the network when the network modi-

fication activity is realized. The activities which then result

are from the node that is inserted. In Figure 1, when Modification

Activity 1 is completed, Node 7 replaces Node 5.

4. Counters which count the number of times a branch or set of

branches is realized prior to the realization of a node.

5. "LAGs" associated with any node relative to any other node,

where the LAG between any two nodes is the difference between the first

realization times of the two nodes.

6. Performance measures and statistics associated with:

a. The probability that a specified node is realized.

b. The average time to realize the specified node.

c. An estimate of standard deviation of the time to

realize the specified node.

d. The minimum time observed to realize the specified

node.

e. The maximum time observed to realize the specified

node.

f. A histogram of the time to realize the specified

node.

g. In addition to statistics (b-f above) for single

nodes, corresponding statistics are available for

the LAGs associated with node pairs. Furthermore,

because situations exist where the nodes of a pair

are not on the same path in the network, the LAG

between these two nodes might be either positive

or negative depending upon which node is realized

first. Therefore, the positive (POSLAG) and nega-

tive (NEGLAG) portions of the LAG are accumulated

separately from the total LAG (TLAG).

APPLICATIONS TO TEST AND CHECKOUT

GERT may be applied to a variety of test and checkout problems at

various levels of detail. At the gross level, it may be used as a

communication aid or to model systems or processes for purposes of in-

vestigating overall programs, plans, policies, etc. At the detailed

level, it may be used to investigate relevant statistics associated with

the operational characteristics of a system or process for purposes of

identifying critical components, bottleneck activities, etc.

In the following section a list of possible GERT applications to

test and checkout will be presented, followed by several examples of

how GERT can be used for modeling specific test and checkout processes.

POSSIBLE GERT APPLICATIONS

Procedures in test and checkout that have been identified as

suitable for GERT representation and analysis include:

1. Evaluating tradeoffs between automated and manual checkout
including the identification of key factors affecting the
degree of automation and computer involvement in testing,
and the investigation of man-machine interaction problems.

2. Evaluating the performance of alternative designs and con-
figurations of proposed and existing automatic test equip-
ment (ATE).

3. Evaluating tradeoffs and apportionments between built-in
(on-board) and test-bench (ground) checkout.

4. Evaluating tradeoffs between system reliability and maintain-
ability.

5. Modeling the test plan development process, including the
design, interface, programming, validation and documentation
stages. The model would be useful for

a. Evaluating the effect of various test philosophies
and maintenance policies on test plan design.

b. Improving the design of the interface between the
ATE and the unit under test (UUT).

c. Determining how various validation procedures affect
the time to develop a final test plan.

•5-

6. Modeling test and checkout processes for

a. Evaluating diagnostic testing and retesting policies.

b. Establishing methodology for setting detection thres-
holds, determining levels of fault isolation, and
selecting and sequencing the individual tests involved
in fault location;

c. Evaluating repair policies;

d. Evaluating condemnation policies;

e. Establishing periodic checkout intervals based upon
system reliability and maintainability.

A variety of design and performance criteria might be encountered

in the above GERT applications. Performance improvement might result,

for example, from

1. Increased reliability of automated checkout systems;

2. Faster test plan development.

3. Improved fault diagnostic capability (faster fault location;
higher probability of correct diagnosis, reduced number of
tests required, etc.).

4. Improved maintainability (reduced repair times, lower pro-
bability of an unsuccessful repair, etc.)-

5. Improved retesting and repair verification (lower probability
of accepting faulty equipment, lower probability of rejecting
repaired equipment, etc.).

6. Increased operational readiness.

Several specific examples of how GERT can be used for modeling

test and checkout processes now will be discussed.

-6-

TEST PLAN DEVELOPMENT PROCESS

GERT is useful as a visual communication aid because it can pro-

vide network representations not only of precedence relationships (as

depicted by standard PERT-type networks) but also probabilistic branch-

ing and feedback loops. The following example demonstrates GERT's use

as a communication aid in describing a Test Plan Development Process

(TPDP). The aim of the TPDP is to develop a test plan that enables au-

tomatic test equipment (ATE) to test a given subsystem or unit under

test (UUT). The plan consists of an acceptable test program stored on

magnetic or paper tape and a written test document describing step-by-

step test procedures. Figure 2 shows a simple activity network model

of the TPDP. The process may be divided into six major stages: (1) pre-

paration, (2) design, (3) UUT-ATE interface, (4) programming, (5) vali-

dation, and (6) final documentation. The activities associated with

these stages are depicted in the GERT network model presented in Figure 3.

Preparation

Preparation of the TPDP starts with the input of a set of

requirements including (1) policy considerations that reflect test

philosophy and objectives, maintenance policies and inspection

standards; (2) UUT information including performance criteria, hard-

ware configuration, failure modes, test point location, etc., and (3)

ATE information including hardware configuration, available stimuli,

and other test capabilities. These requirements are checked to

ensure compatibility of the policy considerations with UUT and ATE

operational characteristics in order to establish feasibility of the

test specifications. If there are neither major logical inconsistencies

nor hardware limitations, the test specifications are approved to

proceed to the design stage (in certain instances, interactive feedback

with the customer may occur at this point to resolve any incompatibilities)

Design

A test concept is formulated and a design package is prepared.

The design provides a test-oriented quasi-English language flow-

chart with each test step defined in terms of stimuli inputs,

stimuli routing, signal conditioning, UUT operating conditions,

parameter measurement identification, and decision criteria

Preparation Design
Programming

Final
Validation Documentation

UUT-ATE
Interface

Fig. 2 -- Test Plan Development Process (General)

-8-

^11

id
4-1

co
CD
<J

o
u

PM

•u
c

I a.
o

.—i

QJ

?>
OJ a
c
CO

co
111
H

I
I

M
•H

for test sequencing. The package is then reviewed to determine

if the design is still feasible and the anticipated level

of test plan performance is acceptable. As a result of review, the

test design is either discarded, sent back for redesign, or approved

for submission to the next stage of development. The design and

review activities are interactive and continue until a detailed

test plan design is approved or discarded as infeasible.

UUT-ATE Interface

An adapter may be needed to interface the UUT to the ATE's

stimuli generators, measurement devices, and switches. This adapter

establishes a testing environment that emulates that experienced by

the UUT in its operational environment. The required adapter design

specifications may be obtained from the test design flow chart, ATE

circuit diagrams, and wiring listings. The interface stage and the

test plan programming stage (discussed in the next section) are

initiated simultaneously upon completion of the test plan design

stage.

Programming

The test programming stage consists of three major activities:

(a) programming, (b) compilation, and (c) verification. Programming

includes coding the information from the flow chart provided by the

design process into a series of programmer-oriented language state-

ments and keypunching cards to form an input source deck.

Compilation involves converting the programmer-oriented language

source deck to a machine-oriented object deck. The output of the

compilation will vary with the ATE and the programming languages

used. For example, a sophisticated compiler may accept a test-

oriented meta-language input and, in addition to the normal trans-

lating and assembling functions, it may automatically check the legality

of source language statements, assign ATE resources (e.g., power sup-

plies), and generate a listing of wire interconnections from the ATE

to the UUT.

10

Verification is concerned with determining whether or not the

program accurately represents the intended design. It is a visual

process of comparing the flow chart and the compilation output list.

Errors are corrected by modifying and recompiling the source deck.

These comparisons and modifications are continued until the program is

completely verified.

Validation

Validation is concerned with determining whether or not the

program adequately represents "real life," viz., whether or not it

can detect and isolate the faults of interest. Complete validation

requires exercising the UUT in all operational and failure modes

under the control of the newly verified program. This is accomplished

by first testing a known operational UUT in all operational modes.

The program is corrected as required until all tests are GO. The

program then is validated for failure modes by forced NO-GO branching,

i.e., at each point in the GO, NO-GO chain, a test result is forced

out of limits by manual intervention. Next, actual failures are

introduced into the UUT to test the ability of the program to detect

and isolate the known faults that might not otherwise be revealed by

forced branching. Numerous problems may arise during validation,

including program coding errors, faulty test logic, improper test

limits or test points, adapter interface wiring errors, an undetected

faulty UUT, and/or equipment failures. Therefore, considerable time

and effort must be devoted to the validation activity before the

program is considered acceptable for documentation.

Final Documentation

After validation and final approval of the test program are

obtained, final flow charting, coding, compilation, and documentation

are completed and copies of the test program are generated.

.11.

DIAGNOSTIC TEST AND REPAIR PROCESS

The following example demonstrates GERT's use for modeling a Diag-

nostic Test and Repair Process (DTRP). Figure 4 shows an aggregated

generalized activity network of the DTRP. The main objective of the

DTRP is to decide, based on an initial series of diagnostic tests,

whether or not a given UUT is defective. A significant feature of the

process is that if the UUT is disapproved as defective, an attempt is

made to locate the defect or fault and, based on the results of this

fault location activity, a decision is rendered to repair or condemn

the unit.

Figure 5 elaborates on the process in a more detailed GERT net-

work. For this particular network, the input incorporates any a priori

knowledge of the percentage of defective units expected (this would be

reflected by the probabilities associated with activities emanating

from the source node). Analysis of historical data or exhaustive test-

ing on a sample number of UUT's may provide the basis for estimating

this percentage.

The network in Figure 5 is essentially a graphic representation

of the hypothesis testing involved in the DTRP. For example, if the

null hypothesis assumes the unit is defective and should be condemned,

Activity (8, 17) represents the case of approving a defective unit (or

in statistical terms, rejecting the hypothesis that the unit is defec-

tive and should be condemned, when in reality the hypothesis is true).

Similarly, Activity (6, 15) represents the case of condemning a non-

defective unit (or in statistical terms, accepting the hypothesis that

the unit should be condemned when indeed it should not). Therefore,

the probabilities associated with realizing Node 17 and Node 15 (stan-

dard GERT statistics) represent the probabilities Q" and (3 associated

with committing Type I and Type II errors respectively. GERT also

can be used to model a confidence test process (e.g., periodically

testing units to determine if they are still nondefective). In this

case, all units might be assumed to be nondefective unless a priori

information to the contrary exists.

Although each of the activities in Figure 5 is relatively self-

explanatory, some aspects of the network deserve elaboration.

-12-

Disapprove_ Fault Locate

O
Return for Retest

Fig. 4 --Diagnostic Test and Repair Process (General)

-13-

41 «
> E

>
O

Q-

0> c

"? 3
O o _

"• z ^
C 0
o

73

'5
"S3
Q

u
o

8.

•g c
o

s
c
D

M
•r-l
fa

-14.

Basically the network has two main paths, one representing activities

associated with the test process when the UUT is in a nondefective

state, and the other when the UUT is in a defective state. It is

necessary to differentiate between these two paths because the char-

acteristics of the activities may differ depending upon the state of

the UUT. For example, one might be expected to associate (and be

able to estimate from the analyses of historical data) a smaller

probability of disapproval and a larger attempted fault location time

for nondefective UUT's than for defective UUT's. The UUT may enter

the test and repair process in either a defective or a nondefective

state, and may change state during the test and repair process. The

network modification capability of GERT (transposition of Node 4

and Node 8) effects this change of state. The true state is known

only when perfect diagnosis and perfect repair exist. More commonly

(and as depicted by our network) the approval and disapproval deci-

sions are made when the true state is not known with certainty,

thereby creating the attendant risks of committing Type I and Type II

error$.

The given network represents only one of a number of possible diag-

nostic and repair policies. For this case, if a UUT is disapproved,

fault location is initiated, and then, based on results of this activity,

a decision is made to condemn or repair. (It may be obvious after in-

itial testing that a particular UUT is beyond repair, in which case the

fault location time is zero.) An additional policy may dictate, for

example, that if the UUT still has not been approved after the n re-

test, it is automatically condemned. The network easily may be restruc-

tured to represent this new policy, as depicted in Figure 6. For this

policy, Node 18 acts as a counter (counting the initial diagnostic test

and the number of retests). A t = 0 time is associated with Activity

(5'5") and Activity (9'9") to ensure that the replacement has occurred

after Activity (18,19) is realized. This could be accomplished by as-

signing a small positive time, say 0.001, to the activities.

Once a network reflects the desired policies to be evaluated, then

the statistics of interest or mreasures of performance can be obtained

from the simulation. An example of how this might be done is presented

in the next section.

• 15-

Non-defective and condemned

?°) I Defective and condemned

Fig. 6 -- Portion of a GERT Network Depicting Policy of Automatic
Condemnation of UUT if Disapproved After n Retests

-16-

PERIODIC CHECKOUT AND REPAIR PROCESS

The following example demonstrates GERT's use for modeling and

evaluating the general periodic checkout and repair process depicted by

the network in Figure 7. This process deals with a type of system

that is to be maintained in an operational status, has an exponential

failure distribution with a constant failure rate X, and periodically

undergoes a checkout to determine whether or not it is still

operational. The system undergoes the checkout of duration t=s

every c time periods. The checkout imposes a stress (probability of

failure) q on a good system. Furthermore, time-deterioration of a

good system starts anew (or because the failure rate is constant,

continues) at the end of the checkout. That is, even if one component

of the system fails and initiates a repair activity, the system is

sufficiently complex that the overall failure characteristics of the

system are unaffected.

A special case of the checkout and repair process will be

developed here to demonstrate the utility of several features of

GERTS (viz., clocks, counters, network modifications, LAG's) for

analyzing test and checkout processes. This particular model was

selected because of its simplicity, and also because it can be

verified analytically. Once verified, the model can be expanded

to more adequately represent "real life" processes. (In addition,

this simple case can serve as a basis for future development of a

cost analysis capability for GERTS.)

For this special case it is assumed that the system undergoes a

checkout of duration s=0, and the time between checkouts is constant

(i.e., isochronal according to calendar time). The checkout is

assumed to uncover any existing failure (i.e., perfect checkout)

whether caused by the checkout stress or by natural deterioration.

If a failure is detected by the checkout, a repair time r (assumed

to be constant) is required to correct the previously identified

cause of failure. Table 1 summarizes these assumptions and initial

conditions.

Two different aspects of the periodic checkout and repair

process have been modeled. The first is a network representation of

-17-

V*. O
o >.

-r, 9

3
O

O
0)

JZ
u

-a
o

•H
M

PL,

u

l
a)

E
a)
4-1

en

•H
&L,

s^

-18-

Table 1

ASSUMPTIONS AND INITIAL CONDITIONS FOR SPECIAL CASE
OF A PERIODIC CHECKOUT PROCESS

ASSUMPTIONS

Systems tested have negative exponential failure distribu-
tions with mean \i = 1/X.

Checkout is perfect, i.e., all failures that exist are
correctly detected; otherwise the system is correctly
identified as being operational. Also, checkout time is
zero (s=0).

Repair is perfect, i.e., upon completion the repaired
component is operational. However, other components
of the system may have failed during the repair period.
Also, repair time is constant and less than the periodic
checkout cycle time (r < c).

Periodic checkout cycle is isochronal, i.e., recurring
at regular intervals (calendar time).

INITIAL CONDITIONS

1. System under test is operational at the time of the first
checkout, i.e., Node 4 of Figure 8 is "in" the network.

-19-

the process as it continues over a large period of time, assuming

that the system is initially (at time T=0) in an operational state.

The second is a network representation of the process over a single

"typical" checkout cycle of duration c, where the initial transient

caused by the "operational at T=0" assumption has been neutralized.

Simulation of these two networks will be used to estimate a useful

performance measure for evaluating alternative checkout and repair

policies (such as a policy specifying the time c between checkouts).

This measure is the "ready rate" of the system, where ready rate

represents the proportion of time the system is "in-commission" (i.e.,

operational and not being subjected to checkout, repair or other activi-

ties that make the system unavailable for immediate use.) Each of the

two models (checkout process over time and checkout cycle) and correspond

ing network representations will now be discussed in more detail.

CHECKOUT AND REPAIR PROCESS OVER TIME

The network depicted in Figure 8 represents the process operating

continuously over a period of time (t~r) and initially operational.

The feedback loop on Node 3 represents the checkout cycle clock that

periodically (every c time periods) regenerates a checkout activity.

Another clock must be established so the network may be realized

and the simulation ended. This simulation clock is represented by

Activity (2,13) with t"T, where Node 13 is the (only) sink node in

the network.

The purpose of the checkout activity is to discover whether or

not the system is nondefective (represented by Node 6) or defective

(represented by Node 9). When the system is nondefective prior to

checkout, the checkout activity including checkout stress may be

thought of as the path containing Nodes 3, 4, 5 and 6 when the system

survived the checkout stress, and Nodes 3,4, 5 and 9 when the check-

out stress caused the system to fail. During q x 100 percent of the

time, the stress of a checkout will cause a nondefective system to fail.

When the system is defective prior to checkout, the checkout

activity is represented by the path containing Nodes 3, 8 and 9.

Thus, Node 9 represents the end of a checkout cycle when the system

-20-

J_ c
D _o

_c
0

o> —
-a D
o #E
c en

_* i/l
c T3

In C
o>

-D S

o

.2-S

o

0)
(J
o
1_

Q-

^_
D
o

_*
u
t>

U o>
T3 E
C
D i—

4_ u-

0) O

1— "O

o o
l_

'~a o>
o Q-

0)
o

Q_ 1_

0)
D >

<-*- O
O

"O 01

a
o> -*—
D u
D

"5 _E
'u in

Oi
Q-

1
1

oo
•

oO
•H
fe

-21-

cithcr was nondefective prior to the checkout and did not survive the

checkout stress or had failed due to natural deterioration since the

checkout in the previous checkout cycle. At this time the system is

known to be defective and repair is initiated on the defective compo-

nent (s).

On the first cycle, either Activity (6,7) or (9,7) is used to start

the failure clock depending upon which condition prevails after the

first checkout stress. After the first cycle, Node 7 merely serves as

a convenient sink for Activity (11,7). (Otherwise, Node 13 would not

be the only sink node in the network.) Once started, the failure clock

represented by the feedback loop on Node 12 continues to regenerate

component failures randomly, with the mean time between failure equal

to pi. Whenever a failure occurs, Modification Activity 4 replaces Node

4 by Node 8 (if it has not already done so), thereby reflecting the fact

that the system will be entering the next scheduled checkout as nonopera-

tional. The failed components will not be identified until the end of

the cycle (i.e., the end of the next scheduled checkout), at which time

Modification Activity 3 returns the network to its original configuration,

the system goes into repair and the cycle commences anew.

The approach taken for this analysis was to simulate the network for

a period of time considerably greater than the checkout cycle time

(T»C) in order to neutralize the effect of the initial transcient caused

by the assumption that the system is initially operational. Throughout

the simulation a count was taken of the number of times the system was

in a defective status at the end of the checkout. This was done by

counting the number of times Activity (9,10) was realized. The ratio

of this number to the total number of checkouts made was then used as

an estimate of the probability (p ,) that the system is defective at the

end of any "typical" checkout cycle. (This probability equals q only

after the first checkout because of the "operational at T = 0" assumption.)

In particular, the following parameters were used:

The procedures for determining the appropriate length of simulation
runs and/or for determining the appropriate number of network realizations
for each simulation run are not presented here; rather, we will be con-
centrating on the modeling aspects of the problem. The reader is referred
to Ref. [8] for a discussion of sample-size determination techniques.

.22.

Simulation time, T = 10,000
Cycle time, c = 10
Checkout time, s = 0
Stress probability of failure, q = 0.25
Repair time, r = 8
Mean time to failure, u = 25

The output of the simulation indicated that the counter associated

with Activity (9,10) was realized 498 times during the T/c = 1000 cycles

Hence, the estimated probability p that the system is defective at the

end of a typical cycle (or at the beginning of the next cycle) is
*

498/1000 = 0.498. This statistic will now be used as one of the

parameters in the checkout cycle model.

CHECKOUT CYCLE

The network of Figure 9 illustrates the checkout cycle where

the probability of the system leaving the checkout in a defective

state is the p, obtained from the preceding simulation. Note that

because the system has a negative exponential failure distribution,

the failure clock can be reinitialized by Activity (4,7) even though

the system remains operational from a previous cycle. (Again, Node 7

is used as a convenient sink for Activity (6,8).)

The network contains two sink nodes and both are to be realized

before the network is realized. The interval of interest for a

single realization of the network, however, is from time T=0 to time

T=c and the statistic of interest for this interval is the expected

ready rate:

E Ready Rate = E t./c

where t. is the total time within a cycle when the system is in com-

mission.

*
The analytic value for this probability is

-c/u -c/u
Pd = q e + 1 - e = 0.4975,

0)

O c

oo

-23-

u
>- u

.*_
D
o

-X
u
<u

_c ..—^
U u
T! 0)
C E
D
4- f—

<u
t— V

V

TJ
O D
l_ i—

<D <D
Q- >
0 o

M- "D o <U
01 O
o D

U _E
"5 In
'o

(L a.

i
i

•
M

•H
te

-24-

The conditional LAGs (that is, the LAG given that it is positive (POSLAG)

and the LAG given that it is negative (NEGLAG)) can be used to facili-

tate the accumulation of in-coiranission periods of time, where the LAG

(i,j) between any two nodes N. and N. is the difference between the

first realization times of the two nodes; viz., T„ - T . When the
J i

system is nondefective after checkout, the system is in-commission during

the cycle from time T until min JT = c, T \, i.e.,

t.|Nondefective = POSLAG (4,9) - NEGLAG (9,8).

(Note that accumulations of LAGs occur only when both nodes are

realized, and further that POSLAGs and NEGLAGs are expressed in abso-

lute values. Of course, for this simple case, POSLAG (4,9) = c.)

When the system is defective after checkout, it becomes in-commission

after repair has been completed unless failures have occurred since

the checkout, and remains in-commission until min T = c, T„
! N

9
N
8

This relationship is expressed as

t.|Defective = POSLAG (6,9) - NEGLAG (9,8) + NEGLAG (6,8).

Jointly, EJt. = E POSLAG (4,9)' - E NEGLAG (9,8)
(11 (1 ' 1

+ E POSLAG (6,9)' + E NEGLAG (6,8)j .

The network in Figure 9 was simulated 500 times per simulation run.

three replications per cycle time, with the following parameters being

used :

Case number I II III IV V VI VII
Cycle time c = 8 10 11 12 13 20 40
Prob. of being defective Pd =

s =
.454 .498 .517 .536 .544 .662 .849

Checkout time 0 0 0 0 0 0 0
Repair time r = 8 8 8 8 8 8 8
Mean time to failure u = 25 25 25 25 25 25 25

To illustrate the calculation of ready rate from our empirical

data, selected results from one of the simulation runs are presented

in Table 2 (viz., one in which c = 12). From values in Table 2 and

the previously mentioned relationship between E t. and LAGs:

• 25-

Table 2

SELECTED SIMULATION RESULTS FOR c = 12, ONE REPLICATION

Std. Prob. of
Mean Dev. Min. Max. Occur.

TLAG (4,9) 12.000 0.000 12.000 12.000 0.472
POSLAG (4,9) 12.000 0.000 12.000 12.000 0.472
NEGLAG (4,9)

TLAG (9,8) 13.313 24.164 -11.989 88.000 1.000
POSLAG (9,8) 26.474 22.959 0.234 88.000 0.602
NEGLAG (9,8) 6.594 3.369 0.095 11.989 0.398

TLAG (6,9) 4.000 0.000 4.000 4.000 0.528
POSLAG (6,9) 4.000 0.000 4.000 4.000 0.528
NEGLAG (6,9)

TLAG (6,8) 16.233 23.842 - 7.776 92.000 0.528
POSLAG (6,8) 27.005 23.161 0.625 92.000 0.344
NEGLAG (6,8) 3.907 2.355 0.020 7.776 0.184

-26-

Et. = (0.472)(12) - (0.398)(6.594) -I- (0. 528) (4.000) + (0.184) (3 . 907)

= 5.871

E Ready Rate = 5.871/12 = 0.489.

The average of the expected ready rates obtained from the three

replications of each cycle time value are plotted in Figure 10. The

curve corresponding to the theoretical ready rate is also provided in

Figure 10 for comparative purposes. A comparison of the empirical

values and the theoretical values indicates that the cycle time chosen

by our approach to maximize expected ready rate would not differ

markedly from the theoretically optimum cycle time.

An approach similar to the one above for evaluating alternative

checkout and repair policies might be useful for more general situa-

tions, such as when imperfect checkout exists, imperfect repair exists,

*
The analytic value is given by the equation:

E.Ready Rate! = 1 - i f (l-e"t/u)dt + (l-q)e"c/y[(l-e~t/u)dt

+ (l-e~c/^) r + qre-CH

e^^ (eC/u - 1+q) -q

(c/U) e"
c/^

For c = 12, u = 25, r = 8 and q = 0.25,

E Ready Rate = 0.4875.

An approximation method for analytically obtaining the cycle time
that maximizes ready rate is discussed in Ref. [l2j .

• 27-

O

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

• Empirical

— Theoretical

I I I

6 8 10 20

Checkout Cycle Time

40 60 100

Fig. 10--Ready Rate as a Function of Checkout Cycle Time

-28-

the activity times are random variables, etc. Keep in mind, however,

that the particular approach of isolating a typical cycle may become

difficult for certain situations, such as when using a less well-

behaved failure distribution than the negative exponential for describing

the system failure characteristics. In general, the modeling and

analysis strategy may need to be modified depending upon the character-

istics of the process being modeled. The versatility of the simulator

described in this paper, however, allows such modifications to be made

easily.

-29-

REFERENCES

1. Ankenbrandt, F. L. (ed.), Electronic Maintainability, Vol. 3,
Engineering Publishers, Elizabeth, N.J., 1960.

2. Barbour, A. A., S.I. Firstman, and M. Kamins, Standardization
of Automatic Test and Checkout Equipment: A Preliminary
Discussion, The RAND Corporation, RM-2685, November 1960.

3. Barlow, R. E., et al., Statistical Estimation Procedures for the
"Burn-In" Process, The RAND Corporation, RM-5109-NASA,
September 1966.

4. Denby, D. C, "Minimum Downtime as a Function of Reliability
and Priority Assignments in Component Repair," The Journal
of Industrial Engineering, Vol. 18, No. 7, July 1967,
pp. 436-439.

5. Drezner, S. M. and A.A.B. Pritsker, Network Analysis of Count-
down, The RAND Corporation, RM-4976-NASA, March 1966.

6. Enlow, R. A. and A.A.B. Pritsker, Planning R&D Projects Using
GERT, Technical Report on NASA/ERC Contract NASA-12-2035,
Arizona State University, Tempe, Arizona, June 1969.

7. Firstman, S. I., A. A. Barbour, J. R. Brom, N. Jordan, M. Kamins,
K. H. Meyer, and B. J. Voosen, An Omnibus of Briefing Papers
on Analysis of Automatic Checkout Equipment and Aids to its
Design, The RAND Corporation, RM-2750, June 1961.

8. Fishman, G. S., Digital Computer Simulation: Estimating Sample
Size, The RAND Corporation, RM-5866-PR, August 1969.

9. Goldman, A. S., and T. B. Slattery, Maintainability: A Major
Element of System Effectiveness, John Wiley and Sons, Inc.,
New York, 1964.

10. Hill, T. W., Jr., "The Improvement of System Performance Through
Sensitivity Analysis Using GERT," Industrial Engineering
Research: Bulletin No. 3, Arizona State University, Tempe,
Arizona, January 1967, pp. 30-48.

11. Jirauch, D. H., "Software Design Techniques for Automatic
Checkout," IEEE Transactions on Aerospace and Electronic
Systems, AES-3, November 1967, pp. 934-940.

12. Kamins, M., Determining Checkout Intervals for Systems Subject
to Random Failures, The RAND Corporation, RM-2578, June 1960.

13. Moon, W. D., "Periodic Checkout and Associated Errors," IEEE Trans-
actions on Aerospace, April 1964, pp. 356-372.

14. Pritsker, A.A.B. (ed.), The Formulation of Automatic Checkout
Techniques, Battelle Memorial Institute, Technical Report No.
ASD-TDR-62-291, March 1962.

15. , GERT: Graphical Evaluation and Review Technique, The
RAND Corporation, RM-4973-NASA, April 1966.

-30-

16. Pritsker, A. A. 15., and W. W. Happ, "GERT: Graphical Evaluation
Review Technique, Part I Fundamentals," The Journal of
Industrial Engineering, Vol. 17, No. 5, May 1966, pp. 267-274.

17. , and P.C. Ishmael, GERT Simulation Program II (GERTS II),
Technical Report on NASA/ERC Contract NASA-12-2035, Arizona
State University, Tempe, Arizona, June 1969.

18. , and G. E. Whitehouse, "GERT: Graphical Evaluation and
Review Technique, Part II Probabilistic and Industrial
Engineering Applications," Journal of Industrial Engineering,
Vol. 17, No. 6, June 1966, pp. 293-301.

19. RCA Automated Support Systems, Technical Journal published by
Aerospace Systems Division of RCA, Burlington, Massachusetts,
1968.

20. St. Clair, E., "The Diagnosis Process," Proceedings in Automatic
Checkout Techniques Held at Battelle Memorial Institute,
September 1962.

21. Stuehler, J. E., "Hardware--Software Tradeoffs in Testing,"
IEEE Spectrum, December 1968, pp. 51-56.

22. Thompson, W. B., Employment of Launch Site Test Equipment for
Maximum System Reliability, General Electric Company, Santa
Barbara, California, Report No. SP-71, TEMPO, February I960.

23. Whitehouse, G. E., and A.A.B. Pritsker, "GERT: Part Ill-Further
Statistical Results; Counters, Renewal Times and Correlations,"
AIIE Transactions, Vol. 1, No. 1, March 1969, pp. 45-50.

24. , and L.J. Riccio, "Application of GERT to Determine
Effective Checkout Procedures and Failure Diagnosis in Micro-
circuits," paper presented at the ORSA 36th National Meeting,
Miami, Florida, November 1969.

-31-

BIOGRAPHIES

DR. LAWRENCE J. MATTERS received a B.S. in Engineering Physics from
Montana State University and a Masters of Business Administration (MBA)
and Ph.D. in Industrial Engineering (Operations Research major) from
Arizona State University. Dr. Watters is president of Anacomp, Inc.
and consultant to The RAND Corporation. His consulting and research
experience includes the design and use of management decision models,
project selection and capital budgeting techniques, simulation analyses,
and resource planning, scheduling and control techniques. Dr. Watters
has authored various Rand publications and has published articles in
such technical and professional journals as Operations Research, The
Journal of Industrial Engineering, and Management Science. His pro-
fessional and honorary memberships include Operations Research Society
of America, The Institute of Management Sciences, Tau Beta Pi (Engi-
neering), Alpha Pi Mu (Industrial Engineering), Sigma Iota Epsilon
(Management) and the Society of Sigma Xi (Scientific Research).

DR. MICHAEL V. VASILIK received a B.S. in Chemical Engineering from
Newark College. Upon graduation as an Air Force ROTC Distinguished
Military Graduate, he was commissioned into the United States Air Force
and attended the Air Force Institute of Technology, receiving a M.S.
in Astronautics - Space Facilities. He received his Ph.D. at Arizona
State University in Industrial Engineering, Operations Research. For-
merly engaged in research at The RAND Corporation, Dr. Vasilik current-
ly is associated with the Arnold Engineering Development Center, Ten-
nessee. He is a member of Omicron Delta Kappa, Tau Beta Pi, Arnold
Air Society, Omega Chi Epsilon, Alpha Pi Mu, Phi Eta Sigma, Operations
Research Society of America, The Institute of Management Sciences, and
the American Institute of Industrial Engineers.

